Which sum is equal to

Answer:
Correct choice is A
Step-by-step explanation:
Note that the denominator [tex]x^2-25=(x-5)(x+5).[/tex] Then rewrite the numerator [tex]x^2+6x-5[/tex] as [tex]x^2+5x+x-5=x(x+5)+(x-5).[/tex]
Substitute both expression into the initial expression:
[tex]\dfrac{x^2+6x-5}{x^2-25}=\dfrac{x(x+5)+(x-5)}{(x+5)(x-5)}=\dfrac{x(x+5)}{(x+5)(x-5)}+\dfrac{(x-5)}{(x+5)(x-5)}=\dfrac{x}{x-5}+\dfrac{1}{x+5}.[/tex]