Respuesta :

Answer:

[tex]\frac{y^2}{16}-\frac{x^2}{20} =1[/tex]

Step-by-step explanation:

We are given equation of hyperbola

Vertices are (0,-4) (0,4)

we can use formula

vertices :  (h , k+a) and (h,k-a)

we can compare and find h , k and 'a'

[tex](h,k+a)=(0,4)[/tex]

[tex]h=0[/tex]

[tex]k+a=4[/tex]

[tex](h,k-a)=(0,-4)[/tex]

[tex]k-a=-4[/tex]

we can add both equations

we get

[tex]2k=0[/tex]

[tex]k=0[/tex]

now, we can find 'a'

[tex]0+a=4[/tex]

[tex]a=4[/tex]

now, we can use foci formula

foci: (h, k + c), (h, k - c)

[tex](h,k+c)=(0,6)[/tex]

[tex]c=6[/tex]

we know that

[tex]c^2=a^2+b^2[/tex]

so, we can solve for b

[tex]6^2=4^2+b^2[/tex]

[tex]b=2\sqrt{5}[/tex]

now, we can use standard equation of hyperbola

[tex]\frac{(y-k)^2}{a^2}-\frac{(x-h)^2}{b^2} =1[/tex]

now, we can plug values

[tex]\frac{(y-0)^2}{4^2}-\frac{(x-0)^2}{(2\sqrt{5})^2} =1[/tex]

[tex]\frac{y^2}{16}-\frac{x^2}{20} =1[/tex]