Respuesta :

Answer:

[tex]6.38\cdot 10^6 m[/tex]

Explanation:

The planet can be thought as a solid sphere rotating around its axis. The moment of inertia of a solid sphere rotating arount the axis is

[tex]I=\frac{2}{5}MR^2[/tex]

where

M is the mass

R is the radius

For the planet in the problem, we have

[tex]M=5.98\cdot 10^{24} kg[/tex]

[tex]I=9.74\cdot 10^{37} kg\cdot m^2[/tex]

Solving the equation for R, we find the radius of the planet:

[tex]R=\sqrt{\frac{5I}{2M}}=\sqrt{\frac{5(9.74\cdot 10^{37}}{2(5.98\cdot 10^{24}}}=6.38\cdot 10^6 m[/tex]