lmrrege
contestada

Which sum or difference identity could be used to prove that cos(270°-theta)=-sin theta is an identity?

Respuesta :

For this case we have that by definition:

[tex]cosine (a-b) = Cosine (a) * cosine (b) + sine (a) * sine (b)[/tex]

If we want to solve [tex]cosine (270-theta)[/tex]then:

[tex]cosine (270-theta) =\\cosine (270) * cosine (theta) + sine (270) * sine (theta) =[/tex]

We know that:

[tex]cosine (270) = 0\\sine (270) = - 1[/tex]

Substituting:

[tex]cosine (270) * cosine (theta) + sine (270) * sine (theta) =\\0 + (- 1 * sine (theta)) =\\-sine (theta)[/tex]

Answer:

[tex]cosine (a-b) = Cosine (a) * cosine (b) + sine (a) * sine (b)[/tex]

Answer:

Your answer would be B.

Step-by-step explanation: