Respuesta :

Solution:

Total Number of marbles in the Bag = 10 red, + 12 green,+ 15 blue,+ 8 red, +12 white, + 7 black= 64 marbles

→Probability of an event =[tex]\frac{\text{Total favorable outcome}}{\text{Total Possible Outcome}}[/tex]

→Probability of choosing a Red Marble from (64 marble=10 R + 12 G + 15 B+8 r + 12 W + 7 B)= [tex]\frac{_{1}^{10}\textrm{C}}{_{1}^{64}\textrm{C}}=\frac{10}{64}=\frac{5}{32}[/tex]

→Probability of choosing a Green Marble from (64 marble=10 R + 12 G + 15 B+8 r + 12 W + 7 B)=[tex]\frac{_{1}^{12}\textrm{C}}{_{1}^{64}\textrm{C}}=\frac {12}{64}=\frac {3}{16}[/tex]

→Probability of choosing a Blue Marble from (64 marble=10 R + 12 G + 15 B+8 r + 12 W + 7 B)= [tex]\frac{_{1}^{15}\textrm{C}}{_{1}^{64}\textrm{C}}=\frac{15}{64}[/tex]  

→Probability of choosing a red of another kind(r)  Marble from (64 marble=10 R + 12 G + 15 B+8 r + 12 W + 7 B)= [tex]\frac{_{1}^{8}\textrm{C}}{_{1}^{64}\textrm{C}}=\frac{8}{64}=\frac{1}{8}[/tex]

→Probability of choosing a White Marble from (64 marble=10 R + 12 G + 15 B+8 r + 12 W + 7 B)= [tex]\frac{_{1}^{12}\textrm{C}}{_{1}^{64}\textrm{C}}=\frac{12}{64}=\frac{3}{16}[/tex]

→Probability of choosing a Black Marble from (64 marble=10 R + 12 G + 15 B+8 r + 12 W + 7 B)= [tex]\frac{_{1}^{7}\textrm{C}}{_{1}^{64}\textrm{C}}=\frac{7}{64}[/tex]