Respuesta :

Answer:

Option C

Step-by-step explanation:

The sum of finite geometric sequence states the following:

[tex]s_{n} =[/tex]Σ[tex]a_{i} r^{i-1} = a_{1}(\frac{1-r^{n} }{1-r} )[/tex]

In this case, [tex]r = \frac{900}{1500} = \frac{9}{15} = \frac{3}{5}[/tex], and [tex]i = 10[/tex]

Therefore,

[tex]1500( 1 + \frac{3}{5} + (\frac{3}{5})^{3} + (\frac{3}{5})^{4} + (\frac{3}{5})^{5} + (\frac{3}{5})^{6} + (\frac{3}{5})^{7} + (\frac{3}{5})^{8} + (\frac{3}{5})^{9}) = 1500( 2,4848) = 3.727, 3251[/tex] ≈  [tex]3.727[/tex]

Therefore, the correct answer is the option C