Respuesta :

Answer:

(a)= option 3

(b)= option 3

Step-by-step explanation:

(A) It is given that a sequence is defined by the recursive function  [tex]a_{1}=1[/tex] and [tex]a_{n}=a_{n-1}+n[/tex]

Now, substituting the value of n=2 in above equation,

[tex]a_{2}=a_{1}+2[/tex]

[tex]a_{2}=1+2[/tex]

[tex]a_{2}=3[/tex]

Again putting n=3,

[tex]a_{3}=a_{2}+3[/tex]

[tex]a_{3}=3+3[/tex]

[tex]a_{2}=6[/tex]

Putting n=4,

[tex]a_{4}=a_{3}+4[/tex]

[tex]a_{4}=6+4[/tex]

[tex]a_{4}=10[/tex]

Putting n=5,

[tex]a_{5}=a_{4}+5[/tex]

[tex]a_{5}=10+5[/tex]

[tex]a_{5}=15[/tex]

Putting n=6,

[tex]a_{6}=a_{5}+6[/tex]

[tex]a_{6}=15+6[/tex]

[tex]a_{6}=21[/tex]

Putting n=7,

[tex]a_{7}=a_{6}+7[/tex]

[tex]a_{7}=21+7[/tex]

[tex]a_{7}=28[/tex]

Hence, option 3 is correct.

(B) The given sequence is :

5, -10, 20, -40, 80.....

Since, the given sequence is GP, therefore

[tex]a_{1}=5[/tex] and r=-2

The nth term is given by:

[tex]a_{n}=a_{1}r^{n-1}[/tex]

For fifteenth term, put n=15 in above equation, we get

[tex]a_{15}=5(-2)^{14}[/tex]

=[tex]5{\times}16384[/tex]

=[tex]81920[/tex]

Hence, the fifteenth term is 81920.

Option 3 is correct.