The figures below are based on semicircles and squares. Find the perimeter and the area of each shape. Give your answer as a completely simplified exact value in terms of π (no approximations).

The figures below are based on semicircles and squares Find the perimeter and the area of each shape Give your answer as a completely simplified exact value in class=

Respuesta :

Answer:

The area of the figure be 137.76 units and perimeter of the figure be  42.39 units .

Step-by-step explanation:

Formula

[tex]Perimeter\ of\ a\ semi\ circle = \frac{2\pi\ r}{2}[/tex]

[tex]Area\ of\ a\ circle = \frac{\pi\ r^{2}}{2}[/tex]

Where r is the radius of circle .

As the figure given in the question consist of one big and Three small semicircle .

As

[tex]Radius\ of\ big\ semicircle = \frac{AB+BC+CD}{2}[/tex]

As AB = BC = CD =  6

[tex]Radius\ of\ big\ semicircle = \frac{18}{2}[/tex]

                                                   = 9 units


[tex]Radius\ of\ small\ semicircle = \frac{3}{2}[/tex]

                                                   = 1.5 units

[tex]\pi = 3.14[/tex]

[tex]Perimeter\ of\ figure = Perimeter\ of\ Big\ semicircle + Perimeter\ of\ three\ semicircle[/tex]

[tex]Perimeter\ of\ figure = 9\times 3.14+3 \times 3.14\times 1.5[/tex]        

                                         = 28.26 + 14.13

                                         = 42.39 units

[tex]Area\ of\ figure = Area\ of\ Big\ semicircle + Area\ of\ three\ semicircle[/tex]

[tex]= \frac{3.14\times 9\times 9}{2} + 3 \frac{3.14\times 1.5\times 1.5}{2}[/tex]                  

Area of the figure = 127.17 + 10.59

                             = 137.76 units

Therefore the area of the figure be 137.76 units and perimeter of the figure be  42.39 units .

Answer:

Total area of shaded region is [tex]54 \pi}[/tex]

Total perimeter of figure is [tex]18 \pi[/tex]

Step-by-step explanation:

Area of semi circle =[tex]\frac{1}{2} \pi r^2[/tex]

Perimeter of semi circle =[tex] \pi r[/tex]

Consider the given figure , it has 4 semi-circles with diameter AD , AB, BC, CD.

We have to determine the shaded area ,

First consider , Semi circle with diameter AD,

diameter AD = 6 + 6 + 6 = 18 cm

Radius  is half of diameter.

Radius = 9 cm

Thus, area of semi circle with diameter 18 cm  is,

Area of semi circle =[tex]\frac{1}{2} \pi (9)^2=\frac{81 \pi}{2}[/tex]     .....(1)

Area of 3 semi circles with diameter 6 cm = 3 × Area of semi circles with diameter 6 cm

diameter = 6 cm ⇒ Radius = 3 cm

Area of semi circle =[tex]\frac{1}{2} \pi (3)^2=\frac{9 \pi}{2}[/tex]      .....(2)

Area of 3 semi circles with diameter 6 cm = 3 × Area of semi circles with diameter 6 cm

                                                            [tex]=\frac{3 \times 9 \pi}{2}[/tex]  

                                                            [tex]=\frac{27 \pi}{2}[/tex]  ..........(3)

Total area of shaded region = Area of semi circle with diameter 18 cm + Area of 3 semi circles with diameter 6 cm

                                        =[tex]\frac{81\pi}{2}+\frac{27 \pi}{2}[/tex]

                                         =[tex]\frac{(81+27) \pi}{2}=\frac{108 \pi}{2}[/tex]

Thus, Total area of shaded region is [tex]54 \pi}[/tex]


Perimeter of the semi circle with radius 9 cm

Perimeter of semi circle =[tex] \pi r=9 \pi[/tex]

Perimeter of the one semi circle with radius 3 cm

Perimeter of semi circle =[tex] \pi r=3 \pi[/tex]

Perimeter of the 3 semi circle with radius 3 cm = 3 × Perimeter of the one semi circle with radius 3 cm

                                             [tex]=9 \pi[/tex]

Total perimeter of figure is [tex]9 \pi+9 \pi=18 \pi[/tex]