Respuesta :

Answer:

1. t = 48.654

2. [tex]x = \frac{8}{3}[/tex]

3. [tex]s = \frac{49}{4}[/tex]

4. [tex]y = \frac{19}{12}[/tex]

Step-by-step explanation:

To solve equations using variables, perform inverse operations to undo each part and isolate the variable.

1. [tex]\frac{t}{5.4} =9.01[/tex]

Multiply by 5.4 on both sides to undo division.

t = 9.01 * 5.4

t = 48.654

2. [tex]\frac{3}{4}x = 2[/tex]

Multiply both sides by the reciprocal of 3/4 which is 4/3.

[tex]x = 2*\frac{4}{3} \\x = \frac{8}{3}[/tex]

3. [tex]s + \frac{1}{4} = 12\frac{1}{2}[/tex]

Convert 12 1/2 into an improper fraction.

[tex]s + \frac{1}{4} = \frac{25}{2}[/tex]

Subtract 1/4 from both sides.

[tex]s + \frac{1}{4} - \frac{1}{4}  = \frac{25}{2} - \frac{1}{4}[/tex]

To subtract fractions without common denominators, convert 25/2 into a fraction with denominator of 4.

[tex]s = \frac{50}{4} - \frac{1}{4}\\s = \frac{49}{4}[/tex]

4. [tex]2\frac{2}{3} + y = 4 \frac{1}{4}[/tex]

Subtract 2 2/3 from both sides.

[tex]2\frac{2}{3} - 2\frac{2}{3}  + y = 4 \frac{1}{4}- 2\frac{2}{3}[/tex]

Convert each fraction into improper fractions and then to common denominators.

[tex]y = \frac{17}{4} - \frac{8}{3}\\\\ y = \frac{51}{12} - \frac{32}{12} \\\\y = \frac{19}{12}[/tex]