Find x.
x =
7
7√2
√(14)

so is a righ-triangle, one angle is 90°, another is 45°, and the other hmmmmm well, the last one must be 45° as well.
now to make it short, both 45° angles make equal opposite sides, namely x = 7.
[tex]\bf \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies c=\sqrt{a^2+b^2} \qquad \begin{cases} c=\stackrel{hypotenuse}{y}\\ a=\stackrel{adjacent}{7}\\ b=\stackrel{opposite}{7}\\ \end{cases} \\\\\\ y=\sqrt{7^2+7^2}\implies y=\sqrt{2(7^2)}\implies y=7\sqrt{2}[/tex]
Answer:
Value of x is 7 units.
Step-by-step explanation:
Given a right angled triangle in which length of perpendicular is given i.e of 7 units.
we have to find the value of x
By trigonometric formulas
[tex]\tan\angle BAC=\frac{Perpendicular}{Base}[/tex]
[tex]\tan 45=\frac{BC}{BA}[/tex]
[tex]1=\frac{7}{x}[/tex]
[tex]x=7[/tex]
By Pythagoras theorem
[tex]y^2=7^2+7^2=49+49=98[/tex]
[tex]y=\sqrt{98}=7\sqrt2units[/tex]
Hence, value of x is 7 units.