Answer:
Numerator of the original fraction is 1
Step-by-step explanation:
Let's assume numerator of fraction as 'y'
denominator of fraction as 'x'
so, fraction is
[tex]\frac{y}{x}[/tex]
The denominator of a fraction is 3 more than its numerator
so, [tex]x=y+3[/tex]
When 1/2 is added to this fraction, the resulting fraction's denominator is twice the denominator of the original fractions and its numerator is 1 more than its denominator
so,
[tex]\frac{y}{x}+\frac{1}{2}=\frac{x+1}{2x}[/tex]
we can use first equation and plug x
[tex]\frac{y}{y+3}+\frac{1}{2}=\frac{y+3+1}{2(y+3)}[/tex]
now, we can solve for y
we get
[tex]\frac{y}{y+3}\cdot \:2\left(y+3\right)+\frac{1}{2}\cdot \:2\left(y+3\right)=\frac{y+4}{2\left(y+3\right)}\cdot \:2\left(y+3\right)[/tex]
[tex]3y+3=y+4[/tex]
[tex]2y=1[/tex]
[tex]y=\frac{1}{2}[/tex]
now, we can find x
[tex]x=\frac{1}{2}+3[/tex]
[tex]x=\frac{7}{2}[/tex]
now, we can find fraction
[tex]\frac{y}{x}=\frac{\frac{1}{2} }{\frac{7}{2}}[/tex]
[tex]\frac{y}{x} =\frac{1}{7}[/tex]
So,
Numerator is 1