Answer: Investment in Account A = 1750
Investment in Account B = 3250
Step-by-step explanation:
Here, the total investment = 5000
Let the amount invested in account A = x
Therefore, the amount invested in account B = 5000-x
In Account A, rate of interest = 4% per year
Thus, interest earn in one year
= [tex]\frac{x\times 4\times 1}{100}[/tex]
= [tex]\frac{4x}{100}[/tex]
Now, The interest in account B = 2% per year
Thus, the interest earn in one year
= [tex]\frac{(5000-x)\times 2\times 1}{100}[/tex]
= [tex]\frac{2(5000-x)}{100}[/tex]
Therefore, total interest = [tex]\frac{4x}{100}+\frac{2(5000-x)}{100}[/tex]
⇒ [tex]\frac{4x}{100}+\frac{2(5000-x)}{100}=135[/tex]
⇒ [tex]\frac{4x}{100}+\frac{10000-2x}{100}=135[/tex]
⇒ [tex]\frac{4x+10000-2x}{100}=135[/tex]
⇒ [tex]\frac{2x+10000}{100}=135[/tex]
⇒ [tex]2x+10000=13500[/tex]
⇒ [tex]2x=3500[/tex]
⇒ [tex]x=1750[/tex]
Therefore, investment in account A = $1750
While, in account B = 5000-1750 = $3250