Respuesta :

Answer:

Last choice [tex]10x^4\sqrt{6}+x^3\sqrt{30x}-10x^4\sqrt{3}-x^3\sqrt{15x}[/tex] is correct.

Step-by-step explanation:

[tex]\left(\sqrt{10x^4}-x\sqrt{5x^2}\right)\left(2\sqrt{15x^4}+\sqrt{3x^3}\right)[/tex]

[tex]\left(x^2\sqrt{10}-x\cdot x\sqrt{5}\right)\left(2\cdot x^2\sqrt{15}+x\sqrt{3x}\right)[/tex]

[tex]\left(x^2\sqrt{10}-x^2\sqrt{5}\right)\left(2x^2\sqrt{15}+x\sqrt{3x}\right)[/tex]

[tex]x^2\sqrt{10}\left(2x^2\sqrt{15}+x\sqrt{3x}\right)-x^2\sqrt{5}\left(2x^2\sqrt{15}+x\sqrt{3x}\right)[/tex]

[tex]2x^4\sqrt{150}+x^3\sqrt{30x}-2\sqrt{75}x^4-x^3\sqrt{15x}[/tex]

[tex]2x^4\cdot5\sqrt{6}+x^3\sqrt{30x}-2\cdot5\sqrt{3}x^4-x^3\sqrt{15x}[/tex]

[tex]10x^4\sqrt{6}+x^3\sqrt{30x}-10\sqrt{3}x^4-x^3\sqrt{15x}[/tex]

[tex]10x^4\sqrt{6}+x^3\sqrt{30x}-10x^4\sqrt{3}-x^3\sqrt{15x}[/tex]

Hence final answer is [tex]10x^4\sqrt{6}+x^3\sqrt{30x}-10x^4\sqrt{3}-x^3\sqrt{15x}[/tex]