Respuesta :

Answer:

Given the statement: Square root 300c^9 = 10c^x square root 3 c

⇒[tex]\sqrt{300c^9} =10c^x\sqrt{3c}[/tex]

Squaring both sides we get;

[tex](\sqrt{300c^9})^2= (10c^x\sqrt{3c})^2[/tex]

Simplify:

[tex]300c^9 = 100c^{2x}(3c)[/tex]

We know: [tex]a^m \cdot a^n = a^{m+n}[/tex]

then;

[tex]300c^9 = 300c^{2x+1}[/tex]

Divide both sides by 300 we get;

[tex]c^9 = c^{2x+1}[/tex]

On comparing both sides we have;

[tex]9 = 2x+1[/tex]

Subtract 1 from both sides we get;

8 = 2x

Divide both sides by 2 we have;

x = 4

Therefore, for the value of x =4 the given statement is true.