Respuesta :

Answer:

β = arccos((a^2 + c^2 - b^2)/(2·a·c))

β = arccos((3^2 + 7^2 - 5^2)/(2·3·7)) = 38.21°

Answer:

b = 38.22

Step-by-step explanation:

In the given triangle ABC, a = 3, b = 5 and c = 7 is given.

We have to find the measure of angle b.

To get the measure of any angle we will apply cosine rule in the triangle.

b² = a² + c² - 2ac(cosb)

5² = 3² + 7² - 2×3×7×cosb

25 = 9 + 49 - 42×cosb

25 = 58 - 42cosb

-42cosb = 25 - 58 = -33

cosb = [tex]\frac{33}{42}[/tex]

cosb = 0.7856

[tex]b= cos^{-1}(0.7856)[/tex]

b = 38.22

b = 38.22 is the correct answer.