Answer:
2
Step-by-step explanation:
[tex]\frac{(3*2)^4*3^{-3}}{2^3*3}[/tex]
we start simplifying by removing the parenthesis
Multiply the exponents inside the the parenthesis
3^4 * 2^4
[tex]\frac{3^4*2^4*3^{-3}}{2^3*3}[/tex]
Now we apply exponential property
a^m * a^n = a^ (m+n)
3^4 * 3^-3 = 3^ (4-3) = 3^1
3 or 3^1 are same
[tex]\frac{3^1*2^4}{2^3*3^1}[/tex]
3^1 at the top and bottom so we cancel it out
\frac{2^4}{2^3}
we apply log property . a^m / a^n = a^m-n
Now subtract the exponents
2^(4-3) = 2^1 = 2