contestada

A particle starts from s=0 and travels along a straight line with v=(t^2 - 4t + 3) m/s, where t is in seconds. Construct the v-t and a-t graphs for the time interval 0<=t<=4s.

Respuesta :

Answer :

Given that

[tex]v = (t^{2} - 4t +3)[/tex]

the time interval is

[tex]0\leq t\leq 4s[/tex]

We calculate the time

[tex]v =t^{2} -4t +3[/tex]

[tex]a = \dfrac{dv}{dt} = \dfrac{d}{dt}(t^{2} -4t +3)[/tex]

[tex]a = 2t - 4[/tex]

[tex]t = 2s[/tex]

Now, the graph of v-t for time interval  [tex]0\leq t\leq 4s[/tex]

[tex]v =t^{2} -4t +3[/tex]

at [tex]t = 0\ s , v = 0 - 0 + 3 = 3 m/s[/tex]

at [tex]t = 2\ s , v = 4 - 8 +3 = -1 m/s[/tex]

at [tex]t = 4\ s , v = 16 - 16 +3 = 3 m/s[/tex]

It is show in figure 1

Now, the graph of a-t for time interval

[tex]v =t^{2} -4t +3[/tex][tex]a = \dfrac{dv}{dt} = \dfrac{d}{dt}(t^{2} -4t +3)[/tex]

[tex]a = 2t - 4[/tex]

at [tex]t = 0\ s , a = - 4 m/s^{2}[/tex]

at [tex]t = 2\ s , a = 0 m/s^{2}[/tex]

at [tex]t = 4\ s , a = 4 m/s^{2}[/tex]

It is show in figure 2

Hence, this is the required solution

Ver imagen lidaralbany
Ver imagen lidaralbany