Respuesta :

Answer with Step-by-step explanation:

We are given right angled triangles so using the Pythagoras Theorem to find the length of the unknown side for each triangle:

19. x=21.65

[tex]25^2=x^2+12.5^2[/tex]

[tex]\sqrt{x^2} =\sqrt{468.75}[/tex]

[tex]x^2=25^2-12.5^2[/tex]

[tex]x=21.65[/tex]


20. x = 8.06

[tex]9^2=x^2+4^2[/tex]

[tex]x^2=9^2-4^2[/tex]

[tex]\sqrt{x^2} =\sqrt{65}[/tex]

[tex]x=8.06[/tex]


21. x = 34.01

[tex]x=\sqrt{14^2+31^2}[/tex]

[tex]x=\sqrt{1157}[/tex]

[tex]x=34.01[/tex]


22. x = 13

[tex]x=\sqrt{5^2+12^2}[/tex]

[tex]x=\sqrt{169}[/tex]

[tex]x=13[/tex]


23. x = 6

[tex]10^2=x^2+8^2[/tex]

[tex]x^2=10^2-8^2[/tex]

[tex]\sqrt{x^2} =\sqrt{36}[/tex]

[tex]x=6[/tex]


24. x = 16

[tex]20^2=x^2+12^2[/tex]

[tex]x^2=20^2-12^2[/tex]

[tex]\sqrt{x^2} =\sqrt{256}[/tex]

[tex]x=16[/tex]


25. x = 60

[tex]65^2=x^2+25^2[/tex]

[tex]x^2=65^2-25^2[/tex]

[tex]\sqrt{x^2} =\sqrt{3600}[/tex]

[tex]x=60[/tex]


26. x = 32

[tex]40^2=x^2+24^2[/tex]

[tex]x^2=40^2-24^2[/tex]

[tex]\sqrt{x^2} =\sqrt{1024}[/tex]

[tex]x=32[/tex]


27. x = 14

[tex]50^2=x^2+48^2[/tex]

[tex]x^2=50^2-48^2[/tex]

[tex]\sqrt{x^2} =\sqrt{196}[/tex]

[tex]x=14[/tex]