FG ∥ CB, A ∈ FG, D ∈ AB, E ∈ AC

Find the value of x. Give reasons to justify your solutions!

Please help, 10 points will be rewarded.

FG CB A FG D AB E ACFind the value of x Give reasons to justify your solutionsPlease help 10 points will be rewarded class=

Respuesta :

Answer:

The value of x is [tex]31^{\circ}[/tex].

Step-by-step explanation:

Please look at the figure attached to get more clear solution.

We have given:

FG||CB

And the line that cut the parallel line is transversal so, here BA is transversal

And alternate interior angles on transverse line are equal

So, ∠1=∠4

And ∠4=[tex]28^{\circ}[/tex]

Hence,  ∠1=∠4=[tex]28^{\circ}[/tex]

And On FG the sum of angles will be [tex]180^{\circ}[/tex]

∠3+∠2+∠1=[tex]180^{\circ}[/tex]

[tex]90^{\circ}[/tex]+∠2+[tex]28^{\circ}[/tex]=[tex]180^{\circ}[/tex]

Hence, ∠2=[tex]62^{\circ}[/tex]

Now, we know that the sum of interior angles is equal to the exterior angle:

Therefore, ∠2+∠5=∠6+∠7

[tex]62^{\circ}+3x=x+4x[/tex]

On simplification we get:

[tex]2x=62^{\circ}[/tex]

[tex]x=31^{\circ}[/tex]

Hence, the value of x is [tex]31^{\circ}[/tex].

Ver imagen flightbath