Write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1, and the given zeros. -4, 2+(root 7)

I know the answer is a trinomial because it makes sense 2+/- (root 7)
but i need help doing it thanks.

Respuesta :

Answer:

x³ - 19x - 12

Step-by-step explanation:

complex roots occur as conjugate pairs

2 + [tex]\sqrt{7}[/tex] is a root then 2 - [tex]\sqrt{7}[/tex] is also a root

hence the factors of the polynomial are

(x + 4), (x - (2 + [tex]\sqrt{7}[/tex]) )(x - (2 - [tex]\sqrt{7}[/tex]))

and f(x) = (x + 4)(x - 2 - [tex]\sqrt{7}[/tex])(x - 2 + [tex]\sqrt{7}[/tex])

            = (x + 4)((x - 2)² - ([tex]\sqrt{7}[/tex])²)

            = (x + 4)(x² - 4x + 4 - 7)

            = (x + 4)(x² - 4x - 3)

            = x³ - 4x² - 3x + 4x² - 16x - 12 ← collect like terms

            = x³ - 19x - 12