Respuesta :

Answer:

x=5

Step-by-step explanation:

Given equation is

[tex]\log\left(x\right)+\log(x-2)=\log(3x)[/tex]

Apply formula: [tex]\log A+\log B=\log\left(AB\right)[/tex]

[tex]\log\left(x(x-2)\right)=\log(3x)[/tex]

[tex]\log\left(x^2-2x)\right)=\log(3x)[/tex]

Since both sides have equal bases so we can drop the log

[tex]x^2-2x=3x[/tex]

[tex]x^2-2x-3x=0[/tex]

[tex]x^2-5x=0[/tex]

[tex]x(x-5)=0[/tex]

Which gives x=0 and x-5=0

or x=0 and x=5

Original problem [tex]\log\left(x\right)+\log(x-2)=\log(3x)[/tex] is not defined at x=0 henc only x=5 is the final answer.