Respuesta :

Answer:

[tex]y=-\frac{5}{3}x-\frac{11}{3}[/tex]

Step-by-step explanation:

We need to write the equation in slope-intercept form which passes through points (1/5,-4) and (16/5,-9)

Slope is given formula:

[tex]m=\frac{y_2-y_1}{x_2-x_1}=\frac{-9-\left(-4\right)}{\frac{16}{5}-\frac{1}{5}}=\frac{-9+4}{\frac{15}{5}}=\frac{-5}{3}[/tex]

Now plug the value of slope m and any one of the given point into point slope formula:

[tex]y-y_1=m\left(x-x_1\right)[/tex]

[tex]y-\left(-4\right)=\frac{-5}{3}\left(x-\frac{1}{5}\right)[/tex]

[tex]y+4=-\frac{5}{3}x+\frac{1}{3}[/tex]

[tex]y=-\frac{5}{3}x+\frac{1}{3}-4[/tex]

Now simplify this and write in slope intercept form y=mx=b

[tex]y=-\frac{5}{3}x-\frac{11}{3}[/tex]

Hence final answer is [tex]y=-\frac{5}{3}x-\frac{11}{3}[/tex]

Answer:

y=[tex]\frac{-5}{3}[/tex]x[tex]\frac{-11}{3}[/tex]


Step-by-step explanation:

y'-y1=m(x-x1)...........(1)

given

(x1,y1)=([tex]\frac{1}{5}[/tex],-4)

(x2,y2)=([tex]\frac{16}{5}[/tex],-9)

we know that slope=m=([tex]\frac{y2-y1}{x2-x1}[/tex])

put values of (x1,y1) and (x2,y2)in above formula

we get

m=([tex]\frac{y2-y1}{x2-x1}[/tex])

m=([tex]\frac{-9-(-4)}{16/5-1/5}[/tex])

m=([tex]\frac{-9-+4)}{15/5}[/tex])

m=([tex]\frac{-5)}{15/5}[/tex])

m=([tex]\frac{-5)}{3}[/tex])

now put slope (m) and points (x1,y1) in (1)

y-y1=m(x-x1)

y-(-4)=-5/3(x-1/5)

y+4= (-5/3)x+1/3

finally we get

y=[tex]\frac{'-5}{3}[/tex]x+[tex]\frac{1}{3}[/tex]-4

y=[tex]\frac{-5}{3}[/tex]x[tex]\frac{-11}{3}[/tex]