Respuesta :

Answer:

Given :   [tex]EP\parallel TQ[/tex]

And, [tex]EQ \cap PT =K[/tex]

That is, K is the intersection point of the line segment EQ and PT.

To prove: [tex]\triangle TKQ\sim \triangle PKE[/tex]

Proof:

Here, [tex]EP\parallel TQ[/tex]

And, QE is the common transversal of these parallel lines,

Thus, By the alternative interior angle theorem,

[tex]\angle KEP\cong \angle KQT[/tex]

Similarly, [tex]\angle KPE\cong \angle KTQ[/tex]

Thus, By AA similarity postulate,

[tex]\triangle TKQ\sim \triangle PKE[/tex]

Hence, Proved.


Ver imagen parmesanchilliwack