[tex]w(x)=a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+...+a_1x+a_0[/tex]
The posible rational zeros of w(x) are:
[tex]\pm\text{dividers of}\ a_0\ \text{and}\ \pm\dfrac{\text{dividers of}\ a_0}{\text{dividers of}\ a_n}[/tex]
[tex]f(x)=x^4+6x^3-3x^2+17x-15\to a_n=1,\ a_0=-15[/tex]
[tex]\text{dividers of}\ a_0= 15:\ \ 1,\ 3,\ 5,\ 16\\\text{dividers\ of}\ a_n=1:\ \ 1[/tex]
Answer:
[tex]\{\pm1,\ \pm3;\ \pm5;\ \pm15\}[/tex]