Pleas Help, I will give Branliest !!!!!!

Answer:
Q. 1
Note that x = 9. Plug in 9 for x.
√(x + 7) = √(9 + 7)
Simplify. Add, then root
√(9 + 7) = √16 = √(4 * 4) = 4
4, or (B) is your answer
---------------------------------------------------------------------------------------------------------
Q. 2
Note that x = 16. Plug in 16 for x
√(x + 20) = √(16 + 20)
Simplify. Add, then root.
√(16 + 20) = √36 = √(6 * 6) = 6
6, or (D) is your answer
---------------------------------------------------------------------------------------------------------
Q. 3
Note that x = 9. Plug in 9 for x.
3 + √(9 + 7) - √(3(9))
Simplify. Combine the terms. Remember to follow PEMDAS.
3 + √(16) - √(27)
3 + 4 - 3√3
Simplify to get the final answer. Note that you can only combine terms with the same amount for roots
(3 + 4) - 3√3
7 - 3√3, or (C) is your answer
---------------------------------------------------------------------------------------------------------
Q. 4
Note that x = 6. Plug in 6 for x.
√(24 - (6))
Simplify. First solve the parenthesis
√(24 - 6) = √(18)
Simplify. Change the root to a decimal.
√18 = √( 3 * 3 * 2) = ~4.24
4.24, or (A) is your answer
---------------------------------------------------------------------------------------------------------
Q. 5
Note that x = 2. Plug in 2 for x in the expression.
6 + √(14 + x) - √(9x)
6 + √(14 + 2) - √(9(2)
Simplify. Follow PEMDAS. First, simplify the parenthesis
6 + √(16) - √18
Next, simplify the roots
6 + 4 - 3√2
Simplify. Combine like terms
(6 + 4) - 3√2
10 - 3√2
Change to decimal
- 3√2 ≈ -4.24
Subtract
10 - 4.24 = 5.76
5.76 or (C) is your answer
~
Put the values of x to the expreesions.
[tex]\sqrt{a}=b\iff b^2=a[/tex]
[tex]Q1.\\x=9\\\\\sqrt{x+7}=\sqrt{9+7}=\sqrt{16}=\boxed{4}\ \text{because}\ 4^2=16\\\\Q2.\\x=16\\\\\sqrt{x+20}=\sqrt{16+20}=\sqrt{36}=\boxed{6}\ \text{because}\ 6^2=36\\\\Q3.\\x=9\\\\\sqrt{x+7}=\sqrt{7+9}=\sqrt{16}=4\ \text{because}\ 4^2=16\\\sqrt{3x}=\sqrt{3\cdot9}=\sqrt9\cdot\sqrt3=3\sqrt3;\ \sqrt9=3\ \text{because}\ 3^2=9\\\\3+\sqrt{x+7}-\sqrt{3x}=3+4-3\sqrt3=\boxed{7-3\sqrt3}\\\\Q4.\\x=6\\\\\sqrt{24-x}=\sqrt{24-6}=\sqrt{18}=\sqrt{9\cdot2}=\sqrt9\cdot\sqrt2=\boxed{3\sqrt2}\approx\boxed{4.24}[/tex]
[tex]Q5.\\x=2\\\\\sqrt{14+x}=\sqrt{14+2}=\sqrt{16}=4\\\sqrt{9x}=\sqrt{9\cdot2}=\sqrt9\cdot\sqrt2=3\sqrt2\\\\6+\sqrt{14+x}-\sqrt{9x}=6+4-3\sqrt2=\boxed{10-3\sqrt2}\approx\boxed{5.76}[/tex]