Respuesta :
[tex]\bf \qquad \qquad \textit{direct proportional variation} \\\\ \textit{\underline{y} varies directly with \underline{x}}\qquad \qquad y=kx\impliedby \begin{array}{llll} k=constant\ of\\ \qquad variation \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \stackrel{\textit{\underline{d}istance of 810 km in 1.5 \underline{h}ours}}{d=kh} \\\\\\ \textit{we know that } \begin{cases} h=1.5\\ d=810 \end{cases}\implies 810=k(1.5)\implies \cfrac{810}{1.5}=k\implies 540=k[/tex]
Answer : The value of constant of variation is, 540
Step-by-step explanation :
As we know that,
[tex]\text{Distance}=\text{Speed}\times \text{Time}[/tex]
That means,
d = s × t
Here,
's' is constant of variation.
Given:
d = distance = 810 km
t = time = 1.5 hr
Now put the values in the above expression, we get:
d = s × t
810 km = s × 1.5 hr
[tex]s=\frac{810km}{1.5hr}=540km/hr[/tex]
Thus, the value of constant of variation is, 540