A geometric sequence is shown below.

2, – 6, 18, – 54, 162, ...

Part A:
Write a recursive relationship for this sequence. Explain how you determined your answer.

Part B:
Write an explicit formula for this sequence.

Respuesta :

gmany

[tex]a_1=2;\ a_2=-6;\ a_3=18;\ a_4=-54;\ a_5=162;\ ...[/tex]

-----------------------------------------------------

A recursive rule for a geometric sequence:

[tex]a_1\\\\a_n=r\cdot a_{n-1}[/tex]

[tex]r=\dfrac{a_{n+1}}{a_n}\to r=\dfrac{a_2}{a_1}=\dfrac{a_3}{a_2}=\dfrac{a_4}{a_3}=...\\\\r=\dfrac{-6}{2}=-3[/tex]

Therefore [tex]\boxed{a_1=2;\qquad a_n=-3a_{n-1}}[/tex]

-----------------------------------------------------

The exciplit rule:

[tex]a_n=a_1r^{n-1}[/tex]

Substitute:

[tex]a_n=2(-3)^{n-1}=2(3)^n(3)^{-1}=2(3)^n\left(\dfrac{1}{3}\right)\\\\\boxed{a_n=\dfrac{2}{3}\left(-3)^n}[/tex]