Respuesta :

frika

Answer:

1. Translation 6 units to the right.

2. Stretch by a factor 5.

3. Translation 2 units up.

Step-by-step explanation:

Consider parent function [tex]f(x)=x^2.[/tex]

1. Translate the graph of the function 6 units to the right. Then you get the function [tex]f_1(x)=(x-6)^2.[/tex]

2. Stretch the graph of the function  [tex]f_1(x)=(x-6)^2[/tex] by a factor 5 and get the function [tex]f_2(x)=5(x-6)^2.[/tex]

3. Translate the graph of the function [tex]f_2(x)=5(x-6)^2[/tex]  2 units up to fet the function [tex]h(x)=5(x-6)^2+2.[/tex]