Answer:
1. Translation 6 units to the right.
2. Stretch by a factor 5.
3. Translation 2 units up.
Step-by-step explanation:
Consider parent function [tex]f(x)=x^2.[/tex]
1. Translate the graph of the function 6 units to the right. Then you get the function [tex]f_1(x)=(x-6)^2.[/tex]
2. Stretch the graph of the function [tex]f_1(x)=(x-6)^2[/tex] by a factor 5 and get the function [tex]f_2(x)=5(x-6)^2.[/tex]
3. Translate the graph of the function [tex]f_2(x)=5(x-6)^2[/tex] 2 units up to fet the function [tex]h(x)=5(x-6)^2+2.[/tex]