Respuesta :

Answer:

-7.32 < x < -0.68  0r -4-√11 < x < √11 - 4

Step-by-step explanation:

The given inequality is x^2 + 8x + 5 < 0

Here we cannot factorize, so we need to use the quadratic formula to find the solution.

The quadratic formula x = [tex]\frac{-b  +/- \sqrt{b^2 - 4ac)} }{2a}[/tex]

Here a = 1 , b = 8 and c = 5

Plug in these values in the formula, we get

x = -8 ± √(8)^2 - 4*1*5)  ÷ 2(1)

x = (-8 ±√44)/2

x = (-8 ±2√11)/2

x = -4 ± √11

There are two values for x.

x = -4 + √11 and x = -4-√11

√10 = 3.16

So x = -4 + 3.32        and x = -4 - 3.32

                             

x =-0.68                   and   x = -7.32

This means

-7.32 < x < -0.68  0r -4-√11 < x < √11 - 4

Thank you.

Answer:

[tex]-4-\sqrt{11} <[/tex] x [tex]-4+\sqrt{11}[/tex]

Step-by-step explanation:

We are given the following quadratic inequality by applying the quadratic formula to solve it (since it can not be factorized) and then express it in an interval notation:

[tex]x^2+8x+5<0[/tex]

We know the quadratic formula:

[tex]x=\frac{-b+-\sqrt{b^2-4ac} }{2a}[/tex]

Putting in the values to get:

[tex]x=\frac{-8+-\sqrt{8^2-4(1)(5)} }{2(1)} \\\\x=\frac{-8+-\sqrt{44} }{2}[/tex]

[tex]x=-4-\sqrt{11} , x=-4+\sqrt{11}[/tex]

Therefore, the interval notation for the given quadratic inequality for x will be:

[tex]-4-\sqrt{11} <[/tex] x [tex]-4+\sqrt{11}[/tex].