QUESTION 34

What is the variance of the following data? If necessary, round your answer to two decimal places.
82, 44, 67, 52, 120

QUESTION 35

What is the variance of the following data? If necessary, round your answer to two decimal places.
10, 12, 15, 18, 11, 13, 14, 16, 19, 20

QUESTION 36

What is the standard deviation of the following data? If necessary, round your answer to two decimal places.
100, 140, 130, 180, 80, 160

Respuesta :

QUESTION 34

We want to find the variance of [tex]82,44,67,52,120[/tex].


The variance can be calculated using the formula,


[tex]\sigma^2=\frac{\sum(x-\bar X)^2}{n}[/tex]


where

[tex]\bar X =\frac{82+44+67+52+120}{5}[/tex]


[tex]\bar X =\frac{365}{5}[/tex]


[tex]\Rightarrow \bar X =73[/tex]


This means that,


[tex]\sigma^2=\frac{(82-73)^2+(44-73)^2+(67-73)^2+(52-73)^2+(52-73)^2+(120-73)^2}{5}[/tex]


This gives us,


[tex]\sigma^2=\frac{(9)^2+(-29)^2+(-6)^2+(-21)^2+(47)^2}{5}[/tex]


[tex]\sigma^2=\frac{81+841+36+441+2209}{5}[/tex]


[tex]\sigma^2=\frac{3608}{5}[/tex]


[tex]\sigma^2=721.6[/tex]


QUESTION 35


We want to find the variance of [tex]10,12,15,18,11,13,14,16,19,20[/tex].


The variance can be calculated using the formula,


[tex]\sigma^2=\frac{\sum(x-\bar X)^2}{n}[/tex]


where

[tex]\bar X =\frac{10+12+15+18+11+13+14+16+19+20}{10}[/tex]


[tex]\bar X =\frac{148}{10}[/tex]


[tex]\fRightarrow \bar X =14.8[/tex]


This means that,


[tex]\sigma^2 =\frac{(10-14.8)^2+(12-14.8)^2+(15-14.8)^2+(18-14.8)^2+(11-14.8)^2+(13-14.8)^2+(14-14.8)^2+(16-14.8)^2+(19-14.8)^2+(20-14.8)^2}{10}[/tex]


This gives us,


[tex]\sigma^2=\frac{(-4.8)^2+(-2.8)^2+(0.2)^2+(3.2)^2+(-3.8)^2+(-1.8)^2+(-0.8)^2+(1.2)^2+(4.2)^2+(5.2)^2}{10}[/tex]


[tex]\sigma^2=\frac{23.04+7.84+0.04+10.24+14.44+3.24+0.64+1.44+17.64+27.04}{10}[/tex]


[tex]\sigma^2=\frac{105.6}{10}[/tex]


[tex]\sigma^2=10.56[/tex]


QUESTION 36


We want to find the variance of [tex]100,140,130,180,80,160[/tex].


The variance can be calculated using the formula,


[tex]\sigma^2=\frac{\sum(x-\bar X)^2}{n}[/tex]


where

[tex]\bar X =\frac{100+140+130+180+80+160}{6}[/tex]


[tex]\bar X =\frac{790}{6}[/tex]


[tex]\Rightarrow \bar X =131.67[/tex]


This means that,


[tex]\sigma^2=\frac{(100-131.6667)^2+(140-131.6667)^2+(130-131.6667)^2+(180-131.6667)^2+(80-131.6667)^2+(160-131.6667)^2}{6}[/tex]


This gives us,


[tex]\sigma^2=\frac{(-31.6667)^2+(8.3333)^2+(-0.6667)^2+(48.3333)^2+(-51.6667)^2+(28.3333)^2}{6}[/tex]


[tex]\sigma^2=\frac{10325}{9}[/tex]


[tex]\sigma^2=1147.22[/tex]