Answer:
Step-by-step explanation:
Two points A and B are given
Using two point formula for straight lines we get
[tex]\frac{x+6}{8+6} =\frac{y-4}{9-4} \\5(x+6) = 14(y-4)\\5x+30 = 14y-56\\5x-14y+86 =0[/tex]
b) A line parallel to AB would be of the form
5x-14y +k=0
Since the line passes through (14,-6) substitute to get k
5(14)-14(-6)+k=0 Or k = -154
Line is 5x-14y-154 =0
c) A line perpendicular to AB would have form as
14x+5y =k1
Substitute (-5,-10) to get k
14(-5)+5(-10) =k1
Or k1 = -120
Hence equation is 14x+5y = -120