Calculate s24 for the arithmetic sequence in which a13=1.9 and the common difference is d=3.7.

Answer:
The correct answer option is 42.6.
Step-by-step explanation:
We know that in a arithmetic sequence, [tex]a_{13}=1.9[/tex] and the common difference is [tex](d)=3.7[/tex].
The standard form of an arithmetic sequence is given by:
[tex]a_n=a_1+(n-1)d[/tex]
So we will substitute the given values in this formula to find the value of [tex]a_1[/tex].
[tex]a_{13}=a_1+(13-1)3.7[/tex]
[tex]1.9=a_1+(12)3.7[/tex]
[tex]1.9=a_1+44.4[/tex]
[tex]a_1=-42.5[/tex]
Now finding the 24th term"
[tex]S_{24}=a_1+(n-1)d\\\\S_{24}=-42.5+(24-1)3.7\\\\\\S_{24}=42.6[/tex].
Therefore, the 24th term of the given arithmetic sequence is 42.6.