ANSWER THIS PLEASSSSSSSSSS
17. Write a function rule for the following arithmetic sequence and use it to find the 250th term. Show your work.
−3, 1, 5, 9, ….
Function Rule: Determining 250th term:

Respuesta :

First check the difference between terms:

[tex]\{1-(-3),5-1,9-5,\ldots\}=\{4,4,4,\ldots\}[/tex]

So every term differs by 4. The first term in the sequence is [tex]a_1=-3[/tex]. Recursively, the sequence is given by

[tex]\begin{cases}a_1=-3\\a_n=a_{n-1}+4&\text{for }n>1\end{cases}[/tex]

Then

[tex]a_2=a_1+4[/tex]

[tex]a_3=a_2+4=a_1+4(2)[/tex]

[tex]a_4=a_3+4=a_1+4(3)[/tex]

and so on, with the general rule

[tex]a_n=a_1+4(n-1)\implies a_n=4n-7[/tex]

Then the 250th term of the sequence would be

[tex]a_{250}=4(250)-7=993[/tex]