Respuesta :

Nayefx

Answer:

[tex]\displaystyle B.g(2)[/tex]

Step-by-step explanation:

we are given f(x) and the graph of g(x)

to figure out which function has the greatest value we need to figure out g(x) function first

the given graph is a parabola so g(x) has to be quadratic function

both vertex and y-intercept of the function is (0,-1)

remember,[tex]\sf \displaystyle Q_{\text{vertex}}=g(x)=a(x-h)^2+k[/tex]

vertex:(h,k)

we got from the graph (h,k)=(0,-1)

substitute the value of h and k to the vertex form:

[tex]\displaystyle g(x)=a(x-0)^2+( - 1)[/tex]

simplify:

[tex]\displaystyle g(x)=ax^2- 1[/tex]

now we need to know figure out a

to do so take (-4,-5) coordinate pair which means if x=-4 then g(x)=-5

it is helpful to figure out a

substitute the value -4 for x and -5 for g(x):

[tex]\displaystyle - 5=a( - 4)^2- 1[/tex]

simplify square:

[tex]\displaystyle - 5=16a- 1[/tex]

add 1 to both sides:

[tex]\displaystyle - 4=16a[/tex]

divide both sides by 16:

[tex]\displaystyle a = - \frac{1}{4} [/tex]

our quadratic function is

[tex]\displaystyle g(x)= - \frac{1}{4} x^2- 1[/tex]

for f(x) and g(x) substitute the values 6,0 and 2,-4 to determine which function has the greatest value

let's work with f(x)

when x is 6 then f(x)

[tex] \displaystyle \: f(6) = \frac{2}{3} \times 6 - 8[/tex]

simplify multiplication:

[tex] \displaystyle \: f(6) = 2\times 2- 8[/tex]

simplify:

[tex] \displaystyle \: f(6) = 4- 8[/tex]

simplify substraction:

[tex] \displaystyle \: f(6) = - 4[/tex]

when x is 0 then f(x)

[tex] \displaystyle \: f(0) = \frac{2}{3} \times 0 - 8[/tex]

simplify multiplication:

[tex] \displaystyle \: f(0) = - 8[/tex]

let's work with g(x) now

when x is 2 then g(x)

[tex]\displaystyle g(2)= - \frac{1}{4} \times 2^2- 1[/tex]

simplify square:

[tex]\displaystyle g(2)= - \frac{1}{4} \times 4- 1[/tex]

simplify:

[tex]\displaystyle g(2)= - 1- 1[/tex]

simplify substraction:

[tex]\displaystyle g(2)= -2[/tex]

when x is -4 then g(x)

[tex]\displaystyle g( - 4)= - \frac{1}{4} (- 4)^2- 1[/tex]

simplify square:

[tex]\displaystyle g( - 4)= - \frac{1}{4} \times 16- 1[/tex]

simplify;

[tex]\displaystyle g( - 4)= - 1 \times 4- 1[/tex]

simplify multiplication:

[tex]\displaystyle g( - 4)= - 4- 1[/tex]

simplify subtraction:

[tex]\displaystyle g( - 4)= - 5[/tex]

so

[tex] \begin{array}{c c c} g(2) > f( 6) > g( - 4) > f(0)\\ - 2 > - 4 > - 5> - 8 \end{array}[/tex]

hence,

our answer choice is [tex]\displaystyle B.g(2)[/tex]