****WILL GIVE BRAINLIEST TO THE FIRST CORRECT ANSWER****

Find the perimeter of the triangle defined by the coordinates (7, 1), (-6, 1), and (10, 6). (Round to nearest tenth)
A) 32.6 units
B) 33.6 units
C) 34.6 units
D) 35.6 units

Respuesta :

The answer to this is D. 35.6.

ANSWER
The correct answer is D
[tex]35.6 \: units[/tex]



EXPLANATION
We need to use the distance formula to determine the length of all sides and then add them up.

The distance formula is given by,

[tex]d = \sqrt{ {(x_2-x_1)}^{2} - {(y_2-y_1)}^{2} } [/tex]


Firs let us find the distance between (7, 1) and (-6, 1).

[tex]d_1 = \sqrt{ {(7 - - 6)}^{2} + {(1 - 1)}^{2} } [/tex]


This implies that,

[tex]d_1 = \sqrt{ {(7+ 6)}^{2} + {(1 - 1)}^{2} } [/tex]




[tex]d_1 = \sqrt{ {(13)}^{2} + {(0)}^{2} } [/tex]



[tex]d_1 =13 \: units[/tex]



Next, we find the distance between (7,1) and (10,6)


[tex]d_2 = \sqrt{ {(7 - 10)}^{2} + {(1 - 6)}^{2} } [/tex]


[tex]d_2 = \sqrt{ {( - 3)}^{2} + {( - 5)}^{2} } [/tex]


[tex]d_2 = \sqrt{9 + 25 } [/tex]

[tex]d_2 = \sqrt{34} = 5.831 \: units[/tex]


Next we find the distance between (-6,1) and (10,6)


[tex]d_3= \sqrt{ {( - 6 - 10)}^{2} + {(1 - 6)}^{2} } [/tex]


[tex]d_3= \sqrt{ {( - 16)}^{2} + {( - 5)}^{2} } [/tex]



[tex]d_3= \sqrt{256+ 25} [/tex]


[tex]d_3= \sqrt{281} = 16.763 \: units[/tex]



We now add all the distance to get,

[tex]perimeter = 13 + 16.763 + 5.831[/tex]


This implies that,


[tex]perimeter = 35.6 \: units[/tex]


to the nearest tenth