A recursive rule for a geometric sequence:
[tex]a_1\\\\a_n=r\cdot a_{n-1}[/tex]
---------------------------------------------------
[tex]a_1=2;\ a_n=\dfrac{4}{9}a_{n-1}\to r=\dfrac{4}{9}[/tex]
---------------------------------------------------
The exciplit rule:
[tex]a_n=a_1r^{n-1}[/tex]
Substitute:
[tex]a_n=2\left(\dfrac{4}{9}\right)^{n-1}=2\cdot\left(\dfrac{4}{9}\right)^n\cdot\left(\dfrac{4}{9}\right)^{-1}=2\cdot\left(\dfrac{4}{9}\right)^n\cdot\dfrac{9}{4}\\\\\boxed{a_n=\dfrac{9}{2}\cdot\left(\dfrac{4}{9}\right)^n}[/tex]