Respuesta :
Answer:
2
Step-by-step explanation:
[tex]f(x)=-0.5(x-8)^2-2[/tex]
Average rate of change formula is
[tex]Average = \frac{f(x_2)-f(x_1)}{x_2 - x_1}[/tex]
Here x1=-4 and x2= 8
Lets find f(x1) and f(x2)
[tex]f(x)=-0.5(x-8)^2-2[/tex]
[tex]f(-4)=-0.5(-4-8)^2-2=-74[/tex]
[tex]f(8)=-0.5(8-8)^2-2=-2[/tex]
now we plug in all the values in the formula
[tex]Average = \frac{f(x_2)-f(x_1)}{x_2 - x_1}[/tex]
[tex]Average = \frac{-2-(-74)}{8-(-4)}[/tex]
[tex]Average = \frac{72}{12}=6[/tex]
Average rate of change = 6
Answer:
Let f(x)=−0.5(x−8)2−2.
What is the average rate of change for the quadratic function from x=−4 to x = 8?
Enter your answer in the box.
Answer is 6 too the test
Step-by-step explanation:
