Respuesta :

znk

Answer:

-5 and +7

Step-by-step explanation:

f(x) = (x²- 3x - 28)/(x² - 2x - 35)

The excluded values of x are those that make the denominator equal to zero.

x² - 2x – 35 =0

(x – 7)(x + 5) =0

x - 7 = 0

     x = 7

x+ 5 = 0

    x = -5

The excluded values of x are -5 and +7.

Answer:

The excluded values of given expression are 5 and 7.

Step-by-step explanation:

Given expression,

[tex]\frac{x^2-3x-28}{x^2-2x-35}[/tex]

Excluded values are values that will make the denominator of a fraction equal to 0.

Here, the denominator = [tex]x^2-2x-35[/tex]

So, for excluded values,

[tex]x^2-2x-35=0[/tex]

[tex]x^2-7x+5x-35=0[/tex]     ( By middle term splitting )

[tex]x(x-7)+5(x-7)=0[/tex]

[tex](x+5)(x-7)=0[/tex]

If x + 5 = 0 ⇒ x = -5,

Or If x - 7 = 0 ⇒ x = 7,

Thus, the excluded values of given expression are 5 and 7.