Respuesta :
Answer:
-5 and +7
Step-by-step explanation:
f(x) = (x²- 3x - 28)/(x² - 2x - 35)
The excluded values of x are those that make the denominator equal to zero.
x² - 2x – 35 =0
(x – 7)(x + 5) =0
x - 7 = 0
x = 7
x+ 5 = 0
x = -5
The excluded values of x are -5 and +7.
Answer:
The excluded values of given expression are 5 and 7.
Step-by-step explanation:
Given expression,
[tex]\frac{x^2-3x-28}{x^2-2x-35}[/tex]
Excluded values are values that will make the denominator of a fraction equal to 0.
Here, the denominator = [tex]x^2-2x-35[/tex]
So, for excluded values,
[tex]x^2-2x-35=0[/tex]
[tex]x^2-7x+5x-35=0[/tex] ( By middle term splitting )
[tex]x(x-7)+5(x-7)=0[/tex]
[tex](x+5)(x-7)=0[/tex]
If x + 5 = 0 ⇒ x = -5,
Or If x - 7 = 0 ⇒ x = 7,
Thus, the excluded values of given expression are 5 and 7.