Respuesta :

Answer:

Perimeter of ΔAKL is, [tex]27 +9 \sqrt{3}[/tex] units.

Area of  ΔAKL is, [tex]\frac{81\sqrt{3} }{2}[/tex] square units

Step-by-step explanation:

Given: In ΔAKL , AK = 9 units , [tex]m\angle K = 90^{\circ}[/tex] and [tex]m\angle A= 60^{\circ}[/tex].

In ΔAKL

[tex]\tan (A) = \frac{KL}{AK}[/tex]

Substitute the value AK = 9 units and [tex]m\angle A =60^{\circ}[/tex] to solve for KL ;

[tex]\tan(60^{\circ}) = \frac{KL}{9}[/tex]

[tex]\sqrt{3} = \frac{KL}{9}[/tex]

⇒[tex]KL = 9\sqrt{3} units[/tex]

In right angle ΔAKL,

Using Pythagoras theorem;

[tex]AL^2 = AK^2+KL^2[/tex]                     ......[1]

Substitute AK = 9 units and [tex]KL =9\sqrt{3} units[/tex] in [1] to solve for AL;

[tex]AL^2 = 9^2+(9\sqrt{3})^2[/tex]

[tex]AL^2 = 81+(81 \cdot 3)[/tex]

[tex]AL^2 = 81+243 = 324[/tex]

[tex]AL = \sqrt{324} = 18 units[/tex]

Perimeter of triangle is the sum of all the sides.

Perimeter of triangle AKL = AK +KL +AL = [tex]9 + 9\sqrt{3} + 18 = 27 +9 \sqrt{3}[/tex] units.

Formula for Area of right angle triangle is given by:

[tex]A = \frac{1}{2} Base \times Height[/tex]

Area of triangle AKL=  [tex]\frac{1}{2} (9\sqrt{3}) \times (9)[/tex]

                                  = [tex]\frac{81\sqrt{3} }{2}[/tex] square units




Ver imagen OrethaWilkison