Respuesta :
Put the coordinates of the points to the equations of the functions and check:
for (1, 4)
y = 5x + 4 → 4 = 5(1) + 4 → 4 = 5 + 4 → 4 = 9 FALSE
y = (x + 1)² → 4 = (1 + 1)² → 4 = 2² → 4 = 4 CORRECT
y = (x + 3)² → 4 = (1 + 3)² → 4 = 4² → 4 = 16 FALSE
y = 7x - 5 → 4 = 7(1) - 5 → 4 = 7 - 5 → 4 = 2 FALSE
Only y = (x + 1)².
Check other points:
for (2, 9)
9 = (2 + 1)² → 9 = 3² → 9 = 9 CORRECT
for (3, 16)
16 = (3 + 1)² → 16 = 4² → 16 = 16 CORRECT
Answer: Only y = (x + 1)²
Answer:
second option is correct
Step-by-step explanation:
Let equation be y = [tex]ax^{2} +bx+c \\[/tex]
here plugging x =1 ,x=2 and x= 15
we have
[tex]a(1)^{2} +b(1)+c \\[/tex] = 4
a +b +c = 4 .................... equation (1)
similarly
[tex]a(2)^{2} +b(2)+c \\[/tex]= 9
4a+2b+c = 9 ....................... equation (2)
plugging x =3 ,we get
[tex]a(3)^{2} +b(3)+c \\[/tex] =16
9a+ 3b +c = 16 ......................... equation (3)
solving these equations simultaneously ,we have
a =1, b= 2 and c =1 ,
y= [tex](1)x^{2} +2x+1\\[/tex]
y = [tex](x+1)^{2} \\[/tex]