Respuesta :

Answer:

The missing terms of the geometric series are

A. [tex]-768,192,-48[/tex]

and

B. [tex]768,192,48[/tex]

Step-by-step explanation:


The given geometric sequence is [tex]...,3072,?,?,12,...[/tex].


The second and sixth term of the geometric sequence are [tex]3072[/tex] and [tex]12[/tex] respectively.



Recall that the nth term of a geometric sequence is given by,


[tex]t_n=ar^{n-1}[/tex].


This implies that the second term will be,

[tex]3072=ar^{2-1}[/tex].


[tex]\Rightarrow 3072=ar---(1)[/tex].


Also the 6th term is


[tex]12=ar^{6-1}[/tex].


[tex]12=ar^{5}---(2)[/tex].


We divide equation (2) by (1) to get,


[tex]\frac{ar^5}{ar}=\frac{12}{3072}[/tex]


[tex]\Rightarrow r^4=\frac{1}{256}[/tex]


[tex]\Rightarrow r=\pm \sqrt[4]{\frac{1}{256} }[/tex]


[tex]r=\pm \frac{1}{4}[/tex]


If


[tex]r=\frac{1}{4}[/tex]


We get,


[tex]t_3=3072\times\frac{1}{4} =768[/tex]


[tex]t_4=768\times\frac{1}{4} =192[/tex]


[tex]t_5=192\times\frac{1}{4} =48[/tex]


But If


[tex]r=-\frac{1}{4}[/tex]


We get,


[tex]t_3=3072\times\frac{-1}{4} =-768[/tex]


[tex]t_4=-768\times\frac{-1}{4} =192[/tex]


[tex]t_5=192\times\frac{-1}{4} =-48[/tex]



Therefore the correct answer is A and B.







Answer:

missing terms of the geometric series are

-768,192,-48


and

768,192. 48

.Step-by-step explanation:

we know that general formula of geometric progression is

[tex]an =a.r^{n-1}[/tex]...........(1)

we are given

a2=3072

a6=12

we have to find

a3=?

a4=?

a5=?

by equayion (1)

[tex]a 2=a.r^{2-1}[/tex]

3072=a.r

similarly

[tex]a6=a.r^{6-1}[/tex]


[tex] 12=a.r^{6-1}[/tex]

12=a.r*(5)

[tex]\frac{a.r^{5} }{a.r}[/tex]=12/3072

[tex]\sqrt r^{4} =\sqrt{\frac{1}{256} }[/tex]

r=±1/4

first put

r=1/4

a3=a2r

a3=3072/4=768

a4=a2.r^2

a4=3072/16

a4=192

a5=a2.r^3

a5=3072/64

a5=48

but for

r= -1/4

a3=a2r

a3=3072/4=-768

a4=a2.r^2

a4=3072/16

a4=192

a5=a2.r^3

a5=3072/64

a5= -48