Given: ABCD is a trapezoid, AB=CD, MN is a midsegment, MN=30, BC=17, AB=26 Find: m∠A, m∠B, m∠C, and m∠D

Respuesta :

frika

Answer:

m∠A=m∠D=60°, m∠B=m∠C=120°

Step-by-step explanation:

Consider isosceles trapezoid ABCD with midsegment MN. Draw two trapezoid heights BF and CE. Then quadrilateral FBCE is rectangle and EF=BC=17 units.

By the trapezoid midsegment theorem,

[tex]MN=\dfrac{AD+BC}{2},\\ \\30=\dfrac{AD+17}{2},\\ \\60=AD+17,\\ \\AD=60-17=43\ units.[/tex]

Segments FA and ED are equal to [tex]\dfrac{43-17}{2}=13\ units.[/tex]

In right triangle ABF, the hypotenuse AB is twice greater than the leg FA, then m∠FBA=30°.

m∠B=m∠FBA+m∠CBF=30°+90°=120°.

In isosceles trapezoid

m∠B=m∠C=120°,

m∠A=m∠D and m∠A=180°-m∠B=180°-120°=60°=m∠D.


Ver imagen frika