Respuesta :
Answer:
The image of the point p is [tex]p'(\frac{1}{4},\frac{-5}{14})[/tex].
Step-by-step explanation:
The center of dilation is origin and the scale factor is [tex]\frac{1}{7}[/tex].
The coordinates of point p are
[tex](\frac{7}{4},\frac{-5}{2})[/tex]
If k is the scale factor and origin is the center of dilation, then
[tex](x,y)\rightarrow (kx,ky)[/tex]
Since the scale factor is [tex]\frac{1}{7}[/tex] and the origin is the center of dilation, therefore
[tex](x,y)\rightarrow (\frac{1}{7}x,\frac{1}{7}y)[/tex]
The coordinates of image of p are
[tex]p(\frac{7}{4},\frac{-5}{2})\rightarrow p'(\frac{1}{7}\times \frac{7}{4},\frac{1}{7}\times \frac{-5}{2})[/tex]
[tex]p(\frac{7}{4},\frac{-5}{2})\rightarrow p'(\frac{1}{4},\frac{-5}{14})[/tex]
Therefore the image of the point p is [tex]p'(\frac{1}{4},\frac{-5}{14})[/tex].
Answer:
c. 1/4, -5/14
Step-by-step explanation:
i just did the test yourself and got it right