Respuesta :

Answer:

The image of the point p is [tex]p'(\frac{1}{4},\frac{-5}{14})[/tex].

Step-by-step explanation:

The center of dilation is origin and the scale factor is [tex]\frac{1}{7}[/tex].

The coordinates of point p are

[tex](\frac{7}{4},\frac{-5}{2})[/tex]

If k is the scale factor and origin is the center of dilation, then

[tex](x,y)\rightarrow (kx,ky)[/tex]

Since the scale factor is [tex]\frac{1}{7}[/tex] and the origin is the center of dilation, therefore

[tex](x,y)\rightarrow (\frac{1}{7}x,\frac{1}{7}y)[/tex]

The coordinates of image of p are

[tex]p(\frac{7}{4},\frac{-5}{2})\rightarrow p'(\frac{1}{7}\times \frac{7}{4},\frac{1}{7}\times \frac{-5}{2})[/tex]

[tex]p(\frac{7}{4},\frac{-5}{2})\rightarrow p'(\frac{1}{4},\frac{-5}{14})[/tex]

Therefore the image of the point p is [tex]p'(\frac{1}{4},\frac{-5}{14})[/tex].

Answer:

c. 1/4, -5/14

Step-by-step explanation:

i just did the test yourself and got it right