Answer:
One number is [tex]\frac{5}{7}[/tex] and the other number is [tex]\frac{1}{7}[/tex]
Step-by-step explanation:
Let x be the smaller number and y be the bigger number.
x = x
y = 5x
6x + 3y = 3
6x + (3 * 5x) = 3
6x + 15x = 3
(÷3)
2x + 5x = 1
7x = 1
x = [tex]\frac{1}{7}[/tex]
6x + 3y = 3
6([tex]\frac{1}{7}[/tex]) + 3y = 3
[tex]\frac{6}{7}[/tex] + 3y = 3
3y = 3 - [tex]\frac{6}{7}[/tex]
3y = [tex]\frac{15}{7}[/tex]
Divide both sides by 3 to get 1y:
y = [tex]\frac{5}{7}[/tex]
So one number is [tex]\frac{5}{7}[/tex] and the other number is [tex]\frac{1}{7}[/tex]