In parallelogram ABCD below, line AC is a diagonal, the measure of angle ABC is 40 degrees, and the measure of angle ACD is 57 degrees. What is the measure of angle CAD

Respuesta :

Answer:

The measure of angle CAD is 83 degrees.

Step-by-step explanation:

Given information: ABCD is a parallelogram, AC is a diagonal, [tex]\angle ABC=40^{\circ}[/tex] and  [tex]\angle ACD=57^{\circ}[/tex].

The opposite sides of parallelogram are congruent.

The diagonal AC divides the parallelogram in two congruent triangles.

In triangle ABC and ADC,

[tex]AB\cong CD[/tex]                                     (Opposite sides of parallelogram)

[tex]\angle ABC\cong \angle ADC[/tex]         (Opposite angles of parallelogram)

[tex]BC\cong DA[/tex]                                     (Opposite sides of parallelogram)

By SAS postulate,

[tex]\triangle ABC\cong \triangle CDA[/tex]

Since we know that opposite angles of parallelogram are equal, therefore

[tex]\angle ABC\cong \angle ADC[/tex]

[tex]\angle ADC=40^{\circ}[/tex]

According to the angle sum property the sum of interior angles of a triangle is 180 degrees.

[tex]\angle CAD+\angle ACD+\angle ADC=180^{\circ}[/tex]

[tex]\angle CAD+57^{\circ}+40^{\circ}=180^{\circ}[/tex]

[tex]\angle CAD=83^{\circ}[/tex]

Therefore the measure of angle CAD is 83 degrees.

Ver imagen DelcieRiveria