Respuesta :

Answer:


8 , 20, 50, 125, 625/2           option D

Step-by-step explanation:

Given that,

first term a₁ = 8

common ratio (r) = [tex]\frac{5}{2}[/tex]

We need to find the five  terms of the geometric progression

We know that the nth term formula :

aₙ = a₁rⁿ-¹

where a₁ is first term and r is the common ratio

n is the number of terms

Second term (n=2)

a₂ = 8*[tex](\frac{5}{2} )^{2-1}[/tex] = [tex]\frac{8*5}{2}[/tex] = 20

Third term (n = 3)

a₃ = 8*[tex](\frac{5}{2} )^{3-1} = 8*(\frac{5}{2} )^{2}  = (\frac{8*25}{4} ) = 50[/tex]

Forth term (n=4)

a₄ = [tex]8(\frac{5}{2} )^{4-1} = 8*(\frac{5}{2} )^{3}  = (\frac{8*125}{8} ) = 125[/tex]

Fifth term (n=5)

a₅ = [tex]8(\frac{5}{2} )^{5-1} = 8*(\frac{5}{2} )^{4}  = (\frac{8*625}{16} ) = \frac{625}{2}[/tex]

So, five terms are :

8 , 20, 50, 125, 625/2

Answer:

D right on edg 2020

Step-by-step explanation: