Respuesta :

Answer: [tex]P\triangle ADH = (a+b+\sqrt{a^2+b^2} )[/tex] unit

Step-by-step explanation:

Since Here Δ ABC is a isosceles triangle.

Also, [tex]AH\perp BC[/tex] and [tex]HD\perp AC[/tex]

Thus, ∠ ADH = 90°

That is, Δ ADH is the right angle triangle.

In which, AD = a unit and HD = b unit

And, By the definition of Pythagoras theorem,

[tex]AH^2 = HD^2 + AD^2[/tex]

⇒ [tex]AH^2 = a^2 +b^2[/tex]

⇒ [tex]AH = \sqrt{a^2+b^2}[/tex]

Since, the perimeter of a triangle = sum of the all sides of the triangle.

Therefore, perimeter of ΔADH = AD + DH + AH

= [tex]a + b + \sqrt{a^2+b^2}[/tex] unit

Ver imagen parmesanchilliwack

Answer:

3a+b

Step-by-step explanation:

Statement-Reasoning Format:

1. CB is base- Given

2. △ABC – isos. △- Given

3. AC=CB- Def. of isos. △

4. AH is an altitude, median, and angle bisector- Def. of alt. med., ∠ bisect. in isos. △

5. m∠BAC= 120°- Given

6. m∠DAH=m∠BAH=m∠BAC/2=120/2=60°-Def of ∠ bisect.

7. 180°-m∠CDH=m∠HDA=180-90=90°-Linear Pair

8. m∠DHA=180- (m∠HDA+m∠HAD)= 180-(90+60)=180-150=30°-Sum of ∠s in a △

9. AD=a cm-Given

10. HA=2AD=2(a)=2a cm- Leg Opposite to 30°

11. HD=b cm- Given

12. P△ADH=a+2a+b= 3a+b cm-Part Whole Postulate

Hope This Helps!