An object is thrown upward at a speed of 171 feet per second by a machine from a height of 17 feet off the ground. The height h of the object after t seconds can be found using the equation h = − 16t^2 + 171t + 17

When will the height be 307 feet?

When will the object reach the ground?

Respuesta :

Answer:


Step-by-step explanation:

a) When will the height be 307 feet?

h = − 16t^2 + 171t + 17

307 = − 16t^2 + 171t + 17

Solving the quadratic equation by the general formula (find the plot attached). It reaches 307' twice as it is a parabolic shot.

t=2.1141s

t=8,5734s

b) When will the object reach the ground?

h = − 16t^2 + 171t + 17

0 = − 16t^2 + 171t + 17

t=-0.0985s (not real as there exists no negative time)

t=10.786s

Ver imagen danielferreyra12

Answer:

a.2.11 s or 8.57 s

b.10.79 s

Step-by-step explanation:

We are given that

Initial velocity=171 ft/s

Height  at which the object is thrown=17 ft

The height h of the object after t seconds can be found by the equation

[tex]h=-16t^2+171t+17[/tex]

a.We have to find  the time taken by object to reach the  height 307 ft.

Substitute the value

[tex]307=-16t^2+171t+17[/tex]

[tex]16t^2-171t-17+307=0[/tex]

[tex]16t^2-171t+290=0[/tex]

Quadratic formula :

[tex]x=\frac{-b\pm\sqrt D}{2a}[/tex]

Where [tex]D=b^2-4ac[/tex]

By using quadratic formula

[tex]t=\frac{-(-171)\pm\sqrt{(-171)^2-4(16)(290)}}{2(16)}[/tex]

[tex]t=\frac{171\pm\sqrt{10681}}{32}[/tex]

[tex]t=\frac{171\pm 103.35}{32}[/tex]

[tex]t=\frac{171+103.35}{32}=8.57[/tex]

[tex]t=\frac{171-103.35}{32}=2.11[/tex]

Hence, the object will take 8.57 s or 2.11 s to reach the height 307 ft.

b.We have to find the time taken by object to reach the ground.

When the object reach the ground, then h=0

Substitute the value

[tex]0=-16t^2+171t+17[/tex]

[tex]16t^2-171t-17=0[/tex]

Again by using quadratic formula

[tex]t=\frac{171\pm\sqrt{(-171)^2-4(16)(-17)}}{32}[/tex]

[tex]t=\frac{171\pm\sqrt{30329}}{32}=\frac{171\pm 174.15}{32}[/tex]

[tex]t=\frac{171+174.15}{32}=10.79[/tex]

[tex]t=\frac{171-174.15}{32}[/tex]

[tex]t=-0.098[/tex]

It is not possible because time cannot be negative.

Hence, the object will take 10.79 s to reach the ground.