Right triangle ABC has its right angle at C.

AC=12 and BC=5 .

Which trigonometric ratios are correct?

Select each correct answer.




cosA=12/13

tanA=12/13

tanB=5/12

sinB=12/13

sinA=5/13

Respuesta :

The answers are:

[tex]cosA=\frac{12}{13}[/tex]

[tex]sinB=\frac{12}{13}[/tex]

[tex]sinA=\frac{5}{13}[/tex]

The explanation is shown below:

1. By definition, when you have a rigth triangle, you can find the sine, cosine and tangent as following:

[tex]sine=\frac{opposite}{hypotenuse}\\cosine=\frac{adjacent}{hypotenuse}\\tangent=\frac{opposite}{adjacent}[/tex]

3. To know the lenght of the hypotenuse you can apply the Pythagorean Theorem:

[tex]hypotenuse=\sqrt{12^{2}+5^{2}}=13[/tex]

4. Therefore if AC=12, BC=5 and the right angle is at C, you can substitute values to find the sine, cosine and tangent of A and B:

[tex]sinA=\frac{5}{13}[/tex]

[tex]sinB=\frac{12}{13}[/tex]

[tex]cosA=\frac{12}{13}[/tex]

[tex]cosB=\frac{5}{13}[/tex]

[tex]tanA=\frac{5}{12}[/tex]

[tex]tanB=\frac{12}{5}[/tex]

Ver imagen carlosego

Answer:

CosA=12/13

SinB=12/13

SinA=5/13

Step-by-step explanation:

I took the test :)