Respuesta :
The answers are:
[tex]cosA=\frac{12}{13}[/tex]
[tex]sinB=\frac{12}{13}[/tex]
[tex]sinA=\frac{5}{13}[/tex]
The explanation is shown below:
1. By definition, when you have a rigth triangle, you can find the sine, cosine and tangent as following:
[tex]sine=\frac{opposite}{hypotenuse}\\cosine=\frac{adjacent}{hypotenuse}\\tangent=\frac{opposite}{adjacent}[/tex]
3. To know the lenght of the hypotenuse you can apply the Pythagorean Theorem:
[tex]hypotenuse=\sqrt{12^{2}+5^{2}}=13[/tex]
4. Therefore if AC=12, BC=5 and the right angle is at C, you can substitute values to find the sine, cosine and tangent of A and B:
[tex]sinA=\frac{5}{13}[/tex]
[tex]sinB=\frac{12}{13}[/tex]
[tex]cosA=\frac{12}{13}[/tex]
[tex]cosB=\frac{5}{13}[/tex]
[tex]tanA=\frac{5}{12}[/tex]
[tex]tanB=\frac{12}{5}[/tex]

Answer:
CosA=12/13
SinB=12/13
SinA=5/13
Step-by-step explanation:
I took the test :)