Data set: 47, 45, 44, 41, 48 1. Find the mean. Mean = 47 + 45 + 44 + 41 + 48 5 = 225 5 = 45 2. Find each absolute deviation. Absolute deviations: 2, 0, 1, 4, 3 What is the mean absolute deviation (MAD) for the data set? MAD

Respuesta :

Answer:

We have been given the data:  47,45,44,41,48

[tex]Mean=\frac{\text{sum of observations}}{\text{number of observations}}[/tex]

On substituting the values in the above formula to find mean:

[tex]Mean=\frac{47+45+44+41+48}{5}[/tex]

[tex]Mean=\frac{225}{5}=45[/tex]

Now, we need to find the absolute deviation that is:

[tex]\text{absolute deviation}=\sum{|x-\bar{x}|}[/tex]

Where [tex]\bar{x}[/tex] is the mean and x is the values given of x which are: 2,0,1,4

[tex]\text{absolute deviation}=|2-45|+|0-45|+|1-45|+|4-45|=43+45+44+41[/tex]

[tex]\Rightarrow \text{absolute deviation}=173[/tex]

Now, to find mean absolute deviation we have a formula:

[tex]\text{mean absolute deviation}=\sum\frac{(x-\bar{x})}{N}[/tex]

[tex]\text{mean absolute deviation}=\frac{|47-45|+|45-45|+|44-45|+|41-45|+|48-45|}{5}[/tex]

[tex]\text{mean absolute deviation}=\frac{2+0+1+4+3}{5}[/tex]

[tex]\text{mean absolute deviation}=2[/tex]

Answer:

2

Step-by-step explanation:

Got it right :3